Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654167

RESUMO

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Assuntos
Azospirillum brasilense , Carvão Vegetal , Solo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiologia , Solo/química , Desidratação , Secas
2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543152

RESUMO

Bupropion (Bup) belongs to the norepinephrine-dopamine reuptake inhibitor (NDRI) class and it is the only FDA-approved drug of its class for the treatment of major depressive disorder (MDD), sold under the name of Wellbutrin. Although bupropion is effective in suppressing the symptoms, its regular use and overdose might lead to seizures and liver failure. Thus, we aimed to nanoformulate bupropion onto a niosomal vesicle to improve its efficacy and achieve the same therapeutic effect at lower scheduled doses. A thin film hydration method was adopted to synthesize and optimize Bup entrapped niosomes using three different surfactants of the sorbitan ester series (Span 20, 40, and 60) in combination with cholesterol. The optimization data determined that the niosome formulated with a cholesterol-to-surfactant ratio of 1:1.5 is the most stable system, with the Bup entrapped niosomes containing Span 20 (Bup@N20C) exhibiting minimal in vitro and in vivo toxicity, and demonstrating the sustained release of Bup in artificial cerebrospinal fluid (ACSF). The Bup@N20C formulation showed increased exploration activity and reduced irregular movements in reserpine-induced depression in the adult zebrafish model, suggesting the potential for mood improvement through the suppression of depression-like behavior which was established by statistical analysis and trajectory data. The Bup@N20C-treated group even surpasses the treatment effect of the positive control group and is comparable to the control group. Hence, it can be inferred that niosomal formulations of Bup represent a promising delivery system capable of achieving the brain delivery of the cargo by bypassing the blood-brain barrier facilitated by their small architectural structure.

3.
AAPS PharmSciTech ; 25(2): 31, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326518

RESUMO

Drug delivery to the buccal mucosa is one of the most convenient ways to treat common mouth problems. Here, we propose a spray-dried re-dispersible mucoadhesive controlled release gargle formulation to improve the efficacy of chlorhexidine. The present investigation portrays an approach to get stable and free-flowing spray-dried porous aggregates of chlorhexidine-loaded sodium alginate nanoparticles. The ionic gelation technique aided with the chlorhexidine's positive surface charge-based crosslinking, followed by spray drying of the nanoparticle's dispersion in the presence of lactose- and leucine-yielded nano-aggregates with good flow properties and with a size range of about 120-350 nm. Provided with the high entrapment efficiency (87%), the particles showed sustained drug release behaviors over a duration of 10 h, where 87% of the released drug got permeated within 12 h. The antimicrobial activity of the prepared formulation was tested on S. aureus, provided with a higher zone of growth inhibition than the marketed formulation. Aided with an appropriate mucoadhesive strength, this product exhibited extended retention of nanoparticles in the throat region, as shown by in vivo imaging results. In conclusion, the technology, provided with high drug retention and extended effect, could be a potential candidate for treating several types of throat infections.


Assuntos
Clorexidina , Faringe , Staphylococcus aureus , Sistemas de Liberação de Medicamentos/métodos , Preparações de Ação Retardada , Antissépticos Bucais , Tamanho da Partícula
4.
Environ Sci Pollut Res Int ; 31(13): 19974-19985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368300

RESUMO

Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd3+) from aqueous solutions. The recovery of Nd3+ that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the ß-cyclodextrin (ß-CD) nanosponges had uniform distribution with regular and smooth shapes. ß-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g-1) than FPPW (2.50 mmol g-1), which could impact the Nd3+ adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for ß-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. ß-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. ß-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, ß-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd3+ from aqueous matrices.


Assuntos
Solanum tuberosum , beta-Ciclodextrinas , Neodímio , Adsorção , Polímeros , beta-Ciclodextrinas/química , Água/química , Física , Cinética
5.
Food Chem ; 438: 138006, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37989023

RESUMO

The co-pigmentation behaviour of RuBisCo proteins (with different concentrations) on peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside (P3C5G, extracted from Rosetta potato's peels) conjugates in isotonic sport drinks (ISD) was examined using multispectral, thermal stability kinetics, and libDock-based molecular docking approaches. The colorant effects of RuBisCo on P3C5G were also studied in spray-dried microencapsulated ISD-models. RuBisCo, especially at a concentration of 10 mg/mL in ISD, showed a co-pigmentation effect on the color of P3C5G, mostly owing to its superior hyperchromicity, pKH-levels, and thermal stability. Results from multispectral approaches also revealed that RuBisCo could noncovalently interact with P3C5G as confirmed by libDock findings, where P3C5G strongly bound with RuBisCo via H-bonding and π-π forces, thereby altering its secondary structure. RuBisCo also preserved color of P3C5G in ISD-powdered models. These detailed results imply that RuBisCo could be utilized in ISD-liquid and powder models that might industrially be applied as potential food colorants in products under different conditions.


Assuntos
Antocianinas , Ribulose-Bifosfato Carboxilase , Simulação de Acoplamento Molecular , Antocianinas/química , Glucosídeos/química , Cinética
6.
Environ Sci Pollut Res Int ; 31(4): 5209-5220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110688

RESUMO

A promissory technic for reducing environmental contaminants is the production of biochar from waste reuse and its application for water treatment. This study developed biochar (CWb) and NH4Cl-modified biochar (MCWb) using cassava residues as precursors. CWb and MCWb were characterized and evaluated in removing dyes (Acid Blue 9 and Food Red 17) in a binary system. The adsorbent demonstrated high adsorption capacity at all pH levels studied, showing its versatility regarding this process parameter. The equilibrium of all adsorption experiments was reached in 30 min. The adsorption process conformed to pseudo-first-order kinetics and extended Langmuir isotherm model. The thermodynamic adsorption experiments demonstrated that the adsorption process is physisorption, exhibiting exothermic and spontaneous characteristics. MCWb exhibited highly efficient and selective adsorption behavior towards the anionic dyes, indicating maximum adsorption capacity of 131 and 150 mg g-1 for Food Red 17 and Acid Blue 9, respectively. Besides, MCWb could be reused nine times, maintaining its original adsorption capacity. This study demonstrated an excellent adsorption capability of biochars in removing dyes. In addition, it indicated the recycling of wastes as a precursor of bio composts, a strategy for utilization in water treatment with binary systems. It showed the feasibility of the reuse capacity that indicated that the adsorbent may have many potential applications.


Assuntos
Compostos Azo , Benzenossulfonatos , Celulose , Manihot , Poluentes Químicos da Água , Corantes/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Carvão Vegetal/química , Adsorção , Cinética
7.
Toxics ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133373

RESUMO

Microplastic pollution has become a global concern, with potential negative impacts on various ecosystems and wildlife species. Among these species, ducks (Anas platyrhynchos) are particularly vulnerable due to their feeding habits and proximity to aquatic environments contaminated with microplastics. The current study was designed to monitor microplastic (MP) pollutants in the freshwater ecosystem of the Panjkora River, Lower Dir, Pakistan. A total of twenty (20) duck samples were brought up for four months and 13 days on the banks of the river, with no food intake outside the river. When they reached an average weight of 2.41 ± 0.53 kg, all samples were sacrificed, dissected, and transported in an ice box to the laboratory for further analysis. After sample preparation, such as digestion with 10% potassium hydroxide (KOH), density separation, filtration, and identification, the MP content was counted. A total of 2033 MP particles were recovered from 20 ducks with a mean value of 44.6 ± 15.8 MPs/crop and 57.05 ± 18.7 MPs/gizzard. MPs detected in surface water were 31.2 ± 15.5 MPs/L. The major shape types of MPs recovered were fragments in crop (67%) and gizzard (58%) samples and fibers in surface water (56%). Other types of particles recovered were fibers, sheets, and foams. The majority of these detected MP particles were in the size range of 300-500 µm (63%) in crops, and 50-150 µm (55%) in gizzards, while in water samples the most detected particles were in the range of 150-300 µm (61%). Chemical characterization by FTIR found six types of polymers. Low-density polyethylene (LDPE) had the greatest polymer detection rate (39.2%), followed by polyvinyl chloride (PVC) (28.3%), high-density polyethylene (HDPE) (22.7%), polystyrene (6.6%), co-polymerized polypropylene (2.5%), and polypropylene homopolymer (0.7%). This study investigated the presence of microplastics in the crops and gizzards of ducks, as well as in river surface water. The results revealed the significant and pervasive occurrence of microplastics in both the avian digestive systems and the surrounding water environment. These findings highlight the potential threat of microplastic pollution to wildlife and ecosystems, emphasizing the need for further research and effective mitigation strategies to address this pressing environmental concern.

8.
Environ Sci Pollut Res Int ; 30(56): 118366-118376, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910355

RESUMO

The present research aimed to evaluate the use of grape stalk in the adsorption of lanthanum and cerium to identify the best operating conditions enabling the application of the bioadsorbent in REEs leached from phosphogypsum. The grape stalk was characterized and showed an amorphous structure with a heterogeneous and very porous surface. Also, it was possible to identify the groups corresponding to carboxylic acids, phenols, alcohols, aliphatic acids, and aromatic rings. The pH effect study showed that the adsorption process of La3+ and Ce3+ ions was favored at pH 5.0. The adsorption kinetics followed the pseudo-second-order model. In just 20 min, 80% saturation was reached, while equilibrium was reached after 120 min. The adsorption isotherms were appropriately adjusted to the Langmuir model, and the maximum adsorption capacities were obtained at 298 K, which were 35.22 mg g-1 for La3+ and 37.99 mg g-1 for Ce3+. Furthermore, the adsorption process was favorable, spontaneous, and exothermic. In the study's second phase, phosphogypsum was leached with a sulfuric acid solution. Then, the adsorption of REEs was carried out under the experimental conditions of pH after leaching and pH 5.0 (adjustment carried out with sodium hydroxide solution) at 298 K for 120 min and with adsorbent dosages of 1 and 5 g L-1. This process resulted in removal percentages above 95% for the most abundant REEs, such as neodymium, lanthanum, and cerium, at pH 5.0 and a dosage of 5 g L-1, demonstrating the effectiveness of the bioadsorbent used. These results indicate the potential of using grape residue as a promising bioadsorbent in recovering rare earth elements from phosphogypsum leachate.


Assuntos
Cério , Vitis , Poluentes Químicos da Água , Lantânio/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
9.
Foods ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959023

RESUMO

In the current study, whey protein-based nanofibers were fabricated to encapsulate Lactobacillus rhamnosus. Purposely, different ratios of PVA (polyvinyl alcohol) and WPI (whey protein isolate) were blended to fabricate nanofibers. Nanofiber mats were characterized in terms of particle size, diameter, tensile strength, elongation at break, and loading efficiency. Morphological and molecular characterizations were carried out using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). Moreover, in vitro viability under simulated gastrointestinal (GI) conditions and thermal stability were also assessed. The results reveal that by increasing the PVA concentration, the conductivity increased while the viscosity decreased. SEM micrographs showed that probiotics were successfully loaded within the nanofiber. The FTIR spectra show strong bonding between the encapsulating materials with the addition of probiotics. In vitro and thermal analyses revealed that the survival of encapsulated probiotics significantly (p < 0.05) improved. In a nutshell, PVA-WPI composite nanofibers have promising potential when used to enhance the viability and stability of probiotics under adverse conditions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37884710

RESUMO

Grain cultivation and its impacts on the environment have been the focus of many studies, especially due to generated solid waste and the wide use of agrochemicals aiming for greater productivity. In this context, the present study proposes a new and consistent step in constructing self-sustainability in rice farming. The proposed stage includes reusing green silica waste as an adsorbent to treat effluents contaminated by pesticides directly applied to rice cultivation. After nano silica production through the rice husks burning, followed by basic leaching and acid precipitation, a carbonaceous material remains. This material, naturally impregnated by Na2SiO3, was washed and dried, characterized, and used to remove the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D). The adsorption essays were performed at 2,4-D at low concentrations (between 1 and 10 mg L-1) at different temperatures. The washed and dried porous carbon (WDPC) surface is irregular and presents slit-shaped channels. The FT-IR analysis identified the siloxane, carbonyl, carboxylate, and methylene functional groups available to interact with the pesticide molecules. The washing/drying process eliminated impurities, improving the surface area from 539.67 to 619.67 cm2 g-1 and pore volume from 0.29 to 0.44 cm3 g-1. Concerning the adsorption of 2,4-D on WDPC, the best pH was 6.0, where around 75% of the pesticide was removed from the water. The equilibrium isotherms presented an S-shaped form indicating a multilayer and cooperative adsorption, with maximum adsorption capacities of 7.504 and 7.736 mg g-1. The estimated ∆Gads, ΔHads, and ΔSads values suggested that pesticide adsorption was spontaneous, exothermic, and favorable. Finally, WDPC demonstrated a good potential to uptake 2,4-D from water, contributing to self-sustainability in rice farming.

11.
Pharmaceutics ; 15(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896271

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most dreadful pathogens relevant in community and nosocomial-related infections around the world. Resensitising MRSA to antibiotics, once it became resistant, was a tough choice due to the high adaptability of this bacteria to savage conditions. This study aimed to create a chimeric enzybiotic against MRSA and test its efficiency, either individually or in combination with antibiotics. The novel enzybiotic BAC100 was constructed by fusing the catalytic domain from the bacteriocin BacL1 from Enterococcus faecalis with the cell-wall-binding domain from protein P17 of Staphylococcus aureus bacteriophage ϕ44AHJD. Apart from its partial lone activity, BAC100 was found to resensitise the MRSA strain to traditional antibiotics, including ampicillin and tetracycline. Both drugs were able to reduce live MRSA cells by 85 and 90%, respectively, within 60 min of treatment together with BAC100. However, no significant activity was observed against MRSA when these drugs were tested independently, pointing to the inherent resistance of MRSA against these conventional antibiotics. To our knowledge, this is one of the first instances where an engineered enzybiotic was found to resensitise MRSA to conventional antibiotics. This study will pave the way for the development of similar peptides that can be used together with antibiotics against gruesome pathogens of clinical importance.

12.
Sci Rep ; 13(1): 15195, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710008

RESUMO

This study explores the fabrication of nanofibers using different types of gelatins, including bovine, porcine, and fish gelatins. The gelatins exhibited distinct molecular weights and apparent viscosity values, leading to different entanglement behavior and nanofiber production. The electrospinning technique produced nanofibers with diameters from 47 to 274 nm. The electrospinning process induced conformational changes, reducing the overall crystallinity of the gelatin samples. However, porcine gelatin nanofibers exhibited enhanced molecular ordering. These findings highlight the potential of different gelatin types to produce nanofibers with distinct physicochemical properties. Overall, this study sheds light on the relationship between gelatin properties, electrospinning process conditions, and the resulting nanofiber characteristics, providing insights for tailored applications in various fields.

13.
Front Nutr ; 10: 1176778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575332

RESUMO

Background: Micronutrient deficiencies including vitamin A, vitamin D, and zinc are highly prevalent in children below 5 years of age in low and -middle-income countries. We aimed to evaluate the effectiveness of ready-to-use Lipid-based Nutrient Supplement-Medium Quantity (LNS-MQ) local name "Wawa-mum" on plasma micronutrient status, hemoglobin concentration and anthropometric measurements. Methods: A community-based non-randomized trial was conducted in the Kurram district of Khyber Pakhtunkhwa from January 2018 to June 2019. A total of 110 children aged 6 to 23 months old were recruited and allocated to the intervention and control arm of the study. A total of 57 children in the intervention arm received a daily ration of 50 g of Wawa-mum, for one year. To assess the impact of the intervention on primary outcome measures, i.e., serum vitamin A, D concentration, plasma zinc, and hemoglobin concentration. Blood samples were collected at baseline and after one year following the intervention. The vitamins concentration in serum were assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and plasma zinc by atomic absorption spectrometry. The hemoglobin concentration was measured by an automated hematology analyzer. A 24-h dietary recall interview was used to assess the nutrient intake adequacy. Multivariate Linear regression models were used to analyze the outcomes while controlling for potential confounders. Results: In the intervention arm, children had on average 6.2 µg/dL (95% CI 3.0-9.3, value of p<0.001) increase in the serum vitamin A concentration, 8.1 ng/mL (95% CI 1.3-14.9, value of p 0.02) increase in serum vitamin D concentration and 49.0 µg/dL (95% CI 33.5-64.5, value of p<0.001) increase in the plasma zinc concentration, and 2.7 g/dL (95% CI 2.0-3.3, value of p<0.001) increase in hemoglobin concentration while adjusted for covariates. An addition, length-for-age z-score (LAZ), weight-for-length z-score (WLZ), weight-for-age z-score (WAZ), and prevalence of undernutrition including stunting, wasting, and underweight were calculated as a secondary outcome to investigate the impact of micronutrients on growth parameters, that has been improved significantly after receiving the Wawa-mum. Conclusion: Wawa-mum (LNS-MQ) is an effective intervention to improve the micronutrient status, hemoglobin concentration, and growth parameters in 6 to 23 months children, which can be scaled up in the existing health system to address the alarming rates of under nutrition in Pakistan and other developing countries. Clinical trial registration: https://doi.org/10.1186/ISRCTN94319790, ISRCTN94319790.

14.
Environ Res ; 231(Pt 3): 116288, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263474

RESUMO

The removal of dyes from wastewater by photocatalytic technologies has received substantial attention in recent years. In the present study, novel Z-scheme V2O5/g-C3N4 photocatalytic composites were organized via simple hydrothermal processes and a sequence of several characterization aspects. The degradation results showed that the optimum Z-scheme GVO2 heterostructure composite photocatalysts (PCs) had a better efficiency (90.1%) and an apparent rate (0.0136 min-1) for the methylene blue (MB) aqueous organic dye degradation, which was about 6.18-fold higher than that of pristine GCN catalyst. Meanwhile, the GVO2 heterostructured PCs showed better recycling stability after five consecutive tests. Moreover, the free radical trapping tests established that •O2- and h+ species were the prime reactive species in the photocatalytic MB degradation process in the heterostructured PCs. The photocatalytic enhanced activity was primarily recognized as the synergistic interfacial construction of the Z-scheme heterojunctions among V2O5 and GCN, which improved the separation/transfer, lower recombination rate, extended visible-light utilization ability, and enhanced reaction rate. Therefore, the existing study affords a simple tactic for the development of a direct Z-scheme for photocatalytic heterojunction nanomaterials for potential environmental remediation applications.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Corantes , Azul de Metileno
15.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111322

RESUMO

Multidrug-resistant bacterial infections are on the rise around the world. Chronic infections caused by these pathogens through biofilm mediation often complicate the situation. In natural settings, biofilms are often formed with different species of bacteria existing synergistically or antagonistically. Biofilms on diabetic foot ulcers are formed predominantly by two opportunistic pathogens, Staphylococcus aureus and Enterococcus faecalis. Bacteriophages and phage-based proteins, including endolysins, have been found to be active against biofilms. In this study, we evaluated the activity of two engineered enzybiotics either by themselves or as a combination against a dual biofilm formed by S. aureus and E. faecalis in an inert glass surface. An additive effect in rapidly disrupting the preformed dual biofilm was observed with the cocktail of proteins, in comparison with mono treatment. The cocktail-treated biofilms were dispersed by more than 90% within 3 h of treatment. Apart from biofilm disruption, bacterial cells embedded in the biofilm matrix were also effectively reduced by more than 90% within 3 h of treatment. This is the first instance where a cocktail of engineered enzybiotics has been effectively used to impede the structural integrity of a dual biofilm.

16.
Antibiotics (Basel) ; 12(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36830298

RESUMO

The emergence of antibiotic resistance in enterococci is a great concern encountered worldwide. Almost all enterococci exhibit significant levels of resistance to penicillin, ampicillin, semi-synthetic penicillin and most cephalosporins, primarily due to the expression of low-affinity penicillin-binding proteins. The development of new and novel antibacterial agents against enterococci is a significant need of the hour. In this research, we have constructed a modular peptide against Enterococcus faecalis. The enzymatic domain of the constructed peptide BP404 is from the bacteriocin BacL1 and the cell wall binding domain from endolysin PlyV12 of phage ϕ1. The protein BP404 was found to be active against two tested strains of Enterococcus faecalis, with a reduction in cell density amounting to 85% and 65%. The cell wall binding assay confirms the binding of the protein to Enterococcus faecalis, which was not seen towards the control strain Escherichia coli, invariably pointing to the specificity of BP404. To the best of our knowledge, this is one of the first instances of the development of a chimeric peptide against Enterococcus faecalis. This study points out that novel proteins can be genetically engineered against clinically relevant enterococci.

17.
Front Chem ; 11: 1299013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162394

RESUMO

A change in the composition and dopant content of selective atoms in a material leads to their new desired properties by altering the structure, which can significantly improve the performance of relevant devices. By acknowledging this, we focused on characterizing the optoelectronic and structural properties of cadmium-substituted zinc selenide (Zn1-xCdxSe; 0 ≤ X ≤ 1) semiconductors using density functional theory (DFT) within the generalized gradient approximation (GGA), EV-GGA, and mBJ approximations. The results proved the cubic symmetry of the investigated materials at all Cd concentrations (0, 0.25, 0.50, 0.75, and 1). Although a linear surge in the lattice constant is observed with the change in Cd content, the bulk modulus exhibits a reverse trend. These materials are observed to be direct bandgap semiconductors at all Cd concentrations, with a decrease in electronic bandgap from 2.76 eV to 1.87 eV, and have isotropic optical properties, showing their potential applicability as a blue-to-red display. The fundamental optical properties of the materials, such as optical conductivity, reflectance, refractive index, absorption, and extinction coefficient, are also discussed. These outcomes provide a computational understanding of the diverse applications of Zn1-xCdxSe semiconductors in optoelectronic, photonic, and photovoltaic devices, particularly for a visible-range display.

18.
Aging (Albany NY) ; 14(17): 6887-6904, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36069806

RESUMO

In this study we investigated the effects of multigenerational exposures to acrylamide (ACR) on ovarian function. Fifty-day-old Wistar albino female rats were divided into the control and ACR-treated groups (2.5, 10, and 20 mg/kg/day) from day 6 of pregnancy until delivery. The obtained females of the first (AF1) and second generation (AF2) were euthanized at 4 weeks of age, and plasma and ovary samples were collected. We found that in utero multigenerational exposure to ACR reduced fertility and ovarian function in AF1 through inducing histopathological changes as evidenced by the appearance of cysts and degenerating follicles, oocyte vacuolization, and pyknosis in granulosa cells. TMR red positive cells confirmed by TUNEL assay were mostly detected in the stroma of the treated groups. Estradiol and IGF-1 concentrations significantly decreased as a result of decreased CYP19 gene and its protein expression. However, ACR exposure in AF2 led to early ovarian aging as evidenced by high estradiol and progesterone levels among all treated groups compared to control group, corresponding to the upregulation of the CYP19 gene and protein expression. The apoptotic cells of the stroma were greatly detected compared to that in the control group, whereas no significant difference was reported in ESR1 and ESR2 gene expression. This study confirms the developmental adverse effects of ACR on ovarian function and fertility in at least two consecutive generations. It emphasizes the need for more effective strategies during pregnancy, such as eating healthy foods and avoiding consumption of ACR-rich products, including fried foods and coffee.


Assuntos
Acrilamida , Ovário , Acrilamida/metabolismo , Acrilamida/toxicidade , Envelhecimento , Animais , Aromatase , Café/metabolismo , Estradiol/metabolismo , Feminino , Desenvolvimento Fetal , Furilfuramida/metabolismo , Furilfuramida/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Gravidez , Progesterona/metabolismo , Ratos , Ratos Wistar
19.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056670

RESUMO

The transition metal-based catalysts for the elimination of greenhouse gases via methane reforming using carbon dioxide are directly or indirectly associated with their distinguishing characteristics such as well-dispersed metal nanoparticles, a higher number of reducible species, suitable metal-support interaction, and high specific surface area. This work presents the insight into catalytic performance as well as catalyst stability of CexSr1-xNiO3 (x = 0.6-1) nanocrystalline perovskites for the production of hydrogen via methane reforming using carbon dioxide. Strontium incorporation enhances specific surface area, the number of reducible species, and nickel dispersion. The catalytic performance results show that CeNiO3 demonstrated higher initial CH4 (54.3%) and CO2 (64.8%) conversions, which dropped down to 13.1 and 19.2% (CH4 conversions) and 26.3 and 32.5% (CO2 conversions) for Ce0.8Sr0.2NiO3 and Ce0.6Sr0.4NiO3, respectively. This drop in catalytic conversions post strontium addition is concomitant with strontium carbonate covering nickel active sites. Moreover, from the durability results, it is obvious that CeNiO3 exhibited deactivation, whereas no deactivation was observed for Ce0.8Sr0.2NiO3 and Ce0.6Sr0.4NiO3. Carbon deposition during the reaction is mainly responsible for catalyst deactivation, and this is further established by characterizing spent catalysts.

20.
Life (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947915

RESUMO

Development of multidrug antibiotic resistance in bacteria is a predicament encountered worldwide. Researchers are in a constant hunt to develop effective antimicrobial agents to counter these dreadful pathogenic bacteria. Here we describe a chimerically engineered multimodular enzybiotic to treat a clinical isolate of methicillin-resistant Staphylococcus aureus (S. aureus). The cell wall binding domain of phage ϕ11 endolysin was replaced with a truncated and more potent cell wall binding domain from a completely unrelated protein from a different phage. The engineered enzybiotic showed strong activity against clinically relevant methicillin-resistant Staphylococcus aureus. In spite of a multimodular peptidoglycan cleaving catalytic domain, the engineered enzybiotic could not exhibit its activity against a veterinary isolate of S. aureus. Our studies point out that novel antimicrobial proteins can be genetically engineered. Moreover, the cell wall binding domain of the engineered protein is indispensable for a strong binding and stability of the proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...